Learn Arduino with Olympia Circuits
Learn Arduino
  • Home
    • Get Started
    • How to Use This Site
  • Electronics
    • The Basics
    • Electricity Flows like Water
    • Electronic Components
    • The Arno Board
  • Programming
    • The Basics
    • setup and loop Blocks
    • Variables and Arrays
    • Connecting with the Pins
    • Flow Control >
      • if Statement
      • Loops
      • Delays
    • Functions
    • Serial Communication
    • USB
    • Some Thoughts
  • Projects
    • Projects 1 >
      • 1.01: Blink
      • 1.02 Blink x2
      • 1.03 Blink Faster
      • 1.04 LED Chase!
      • 1.05 Wait To Blink
      • 1.06 Blink a Little Faster Now
      • 1.07 LED Fade
      • 1.08 RGB Blink
      • 1.09 Change RGB Color with SW1
      • 1.10 Fade RGB Colors
      • 1.11 Reaction Time Game
    • Projects 2 >
      • 2.01 Hello World
      • 2.02 Talk Back
      • 2.03 ASCII Values
      • 2.04 Ski Game
      • 2.05 Demonstration of the String Object
    • Projects 3 >
      • 3.01 Read the Potentiometer
      • 3.02 ASCIIbet Soup
      • 3.03 Potentiometer sets LED Brightness
      • 3.04 Potentiometer Sets Blink Rate
      • 3.05 LED Chase, Part II
    • Projects 4 >
      • 4.01 Bringing the Piezo to Life
      • 4.02 Controlling the Piezo with a Function
      • 4.03 Piezo C Major
      • 4.04 Piezo Greensleaves
      • 4.05 Piezo Metronome
      • 4.06 Piezo as an Input
      • 4.07 Piezo as an Input 2
      • 4.08 Metronome II
      • 4.09 Piezo Playback
      • 4.10 Piezo Fireworks
      • 4.11 Piezo Mosquito
    • Projects 5 >
      • 5.01 The Phototransistor
      • 5.02 Light and Sound
      • 5.03 Light and Sound II
    • Projects 6 >
      • 6.01 EEPROM
      • 6.02 I2C Address Scan
      • 6.03 Read the I2C Temperature Sensor
      • 6.04 High Temperature Alarm
    • Projects 7 >
      • 7.01 Arno Phone Home
      • 7.02 Keyboard Alphabet
      • 7.03 Move Mouse
      • 7.04 Draw Squares
    • Special Projects >
      • Bike Light Demo
  • References
    • Arno Pin Key
    • Arno Schematic
    • Project Index

electricity flows like water

Picture
It’s easier to wrap our heads around the concepts of electrical potential, resistance, and current by thinking of electricity like the flow of water.  We can create high potential by filling a water tower.  This is analogous to a difference in voltage. And just like charging a battery, it takes energy to fill a water tower (the law of conservation of energy is alive and well!). Water will flow if we create a path between a point of high potential and a point of low potential, just like electrical current.  The path in our analogy could be a pipe that allows water to flow from the water tower to the ground.  In an electrical circuit the path consists of copper wire and electronic components that electricity will flow through. 

The rate of flow will depend on the difference in potential and the resistance of the path (remember I = V/R?).  If we use a big pipe, water will flow quickly; a narrow section of pipe will add resistance and slow the rate of flow through the entire circuit.  We often use special devices, called resistors, to slow the rate of electrical current through our circuits.

Like electricity, we can capture the energy of the flowing water to do work. We capture electrical energy to turn on lights, make sounds, turn motors, heat and cool objects, and even do math!

next: electronic components

Copyright Olympia Circuits LLC 2014. All Rights Reserved.